Near-field scanning optical microscope probe analysis.
نویسندگان
چکیده
In this article results of a comparison of two NSOM probe characterization methods are presented. Scanning electron microscopy analysis combined with electromagnetic field modeling using the finite difference in time domain method are compared with measured far-field radiation diagrams of NSOM probes. It is shown that measurement of far-field radiation diagrams can be an efficient tool for daily checking of the NSOM probes quality. Moreover, it is shown that the inner probe geometry has large influence on the directional radiation of an NSOM probe and the far-field radiation diagram can be used as a simple method to distinguish between different probe geometries.
منابع مشابه
An overview of scanning near-field optical microscopy in characterization of nano-materials
Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...
متن کاملAn overview of scanning near-field optical microscopy in characterization of nano-materials
Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...
متن کاملOptical and electrical characterization at the nanoscale with a transparent probe of a scanning tunnelling microscope.
A new type of scanning probe microscope, combining features of the scanning tunnelling microscope, the scanning tunnelling luminescence microscope with a transparent probe and the aperture scanning near-field optical microscope, is described. Proof-of-concept experiments were performed under ultrahigh vacuum conditions at varying temperature on GaAs/AlAs heterostructures.
متن کاملPlasmonic Probe With Circular Nano-Moat for far-Field Free Nanofocusing
In this work, a metallic probe with a sharp tip and two half-circular nanostructures on its base is introduced and investigated. The proposed design aims at improving the detection performance of a probe for scattering scanning near-field optical microscopy in terms of enhanced signal-to-noise ratio. Under the premise of processing feasibility, the structure of the probe is designed and optimiz...
متن کاملLow-temperature scanning system for near- and far-field optical investigations.
A combined system for far- and near-field optical spectroscopy consisting of a compact scanning near-field optical microscope and a dedicated spectrometer was realized. The set-up allows the optical investigation of samples at temperatures from 10 to 300 K. The sample positioning range is as large as 5 x 5 x 5 mm3 and the spatial resolution is in the range of 1.5 micro m in the far-field optica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ultramicroscopy
دوره 108 7 شماره
صفحات -
تاریخ انتشار 2008